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Metamodels 

 Metamodels:  also called surrogate, response surface model, 
or emulator.  

 Typically constructed over a small number of simulation 
model runs (“code runs”) 

 The simulation is very costly to run, we can only afford a 
limited number of runs, often dozens to a few hundred 

 The code runs provide the training data (e.g. sets of input 
parameters and corresponding response values) 

 The metamodel is constructed to provide a fast, cheap 
function evaluation for the purposes of uncertainty 
quantification, sensitivity analysis, and optimization. 

 Simpson, T. W., V. Toropov, V. Balabanov, and F.A.C. Viana. Design and analysis of computer experiments 
in multidisciplinary design optimization: A review of how far we have come or not. In Proceedings of the 
12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference), Victoria, British Columbia, 
Canada, September 2008. AIAA Paper 2008-5802. 
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Metamodels 

 Taylor series approximations 

 Linear regression models 

 Neural networks 

 Moving least squares 

 Radial Basis Functions 

 Multivariate Adaptive Regression Splines (MARS) 

 Gaussian process models 

 Polynomial Chaos expansions 

 Multi-fidelity models 

 Reduced-order models 
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Gaussian Processes 

 Why are GPs popular emulators of computer models?  
 They allow modeling of fairly complicated functional forms 

 They do not just offer a prediction at a new point but an estimate of 
the uncertainty in that prediction 

 

 Classic references:  
 Sacks, J., W.J. Welch, T.J. Mitchell, and H.P. Wynn. Design and analysis 

of computer experiments. Statistical Science, 4(4):409–435, 1989. 

 Santner, T., B. Williams, and W. Notz. The Design and Analysis of 
Computer Experiments. New York, NY: Springer, 2003. 

 Rasmussen, C.E. and C.K.I. Williams.  Gaussian Processes for Machine 
Learning.  MIT Press, 2006.  e-book:  

 http://www.gaussianprocess.org/gpml/chapters/ 
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Gaussian Process 

 A stochastic process is a collection of random variables 
{y(x) | xX} indexed by a set X in d, where d is the 
number of inputs.  

 A Gaussian process is a stochastic process for which any 
finite set of y-variables has a joint multivariate Gaussian 
distribution.  That is, the joint probability distribution for 
every finite subset of variables y(x1), ..y(xk) is multi-variate 
normal. 

 A GP is fully specified by its mean function (x) = E[y(x)] 
and its covariance function C(x, x′).  



What does this mean?  

 Start with a set of runs of a computer code:  at each sample xi 
we have output yi(xi).  

 The output at a new input value, xnew, is uncertain.  

 This is what a GP will predict.  

 Related to regression.  

 Related to random functions.   From our set of samples, we 
have a “deterministic” function that is a set of points {x, y(x)} 
or {x, f(x)}.  Instead of f(x), if we use the outcome of a random 
draw from some joint distribution of random variables {Z(x1), 
… Z(xn)}, we get a realization of a random function.  

 This is a stochastic process (e.g. generate many draws and get 
many functions).  



How do we simulate realizations  
of a random function?  

 Start with {Z(x1), … Z(xn)} from a multivariate normal distribution 
with mean 0 and covariance matrix C=Cov[Z(xi), Z(xj)].  

 To simulate a random draw:  

 Generate n standard normal(0,1) random variables, S. 

 Perform a Cholesky decomposition C= LLt.  

 Define Z = LS.  

 Plot the points {xi, Zi = Z(xi)}  

 Connect the dots 



Example covariance function in 1-D 

 Cov[Z(xi), Z(xj)] = exp(-|xi - xj|
2) 

 



Gaussian Process 

 We have the capability to generate random functions  

 We can add a mean function (typically a constant or a simple 
polynomial regression)  

 We can multiply the covariance by a constant to scale the 
vertical axis. 

 Now, we can vary  to get a certain amount of “wiggle” in the 
random function (smaller  leads to less wiggle). 

 NOW:  we want to constrain these random functions to be 
consistent with the data points we have 

 We can either take a Bayesian approach or a maximum 
likelihood (MLE) approach to estimate the parameters 
governing the Gaussian process 

 Start with a MLE approach 



Gaussian Process 

 Typical formulation: a Gaussian process is defined by its mean 
and covariance function.  We assume:  

E 𝑦 𝒙 = 𝑓 𝒙 𝑇𝜷             Mean 

Cov 𝑦 𝒙 , 𝑦 𝒙′ = σ2𝑟(𝒙, 𝒙′)  Covariance 

𝒀~𝑁(𝑓 𝑿 𝑇𝜷, σ2𝑹)          Multivariate Normal 

 A few notes:  
 𝒙 is one set of inputs of dimension d.  We have N samples, 𝒙i, for 

i=1…N.  Each 𝒙i = {𝑥i1 , 𝑥i2, …. ,𝑥id}.  X denotes the (d*N) set of all 
samples, and 𝜷 is the d*1 vector of regression coefficients. It may just 
be a constant 𝛽.   

 It is more typical to write the covariance as the product of a scaling 
factor σ2 times the correlation 𝑟 𝒙, 𝒙′ .   

 The full N ∗ N correlation matrix between all points is 𝑹 

 𝒀 is the (N*1) vector of response values. 

 



Gaussian Process 

 NOW:   what is the prediction for a new point?  

 

E 𝑦 𝒙∗ |𝒀 = 𝑓 𝒙∗ 𝑇𝜷 + 𝑟 𝒙∗ 𝑇𝐑−1[𝐘 − 𝐅𝜷] 

Var[𝑦 𝒙∗ 𝒀 = σ2(1 − 𝑟 𝒙∗ 𝑇𝐑−1𝑟 𝒙∗ )
 

   

 

 The correlation matrix for the training points is 𝑹. 

 𝑟 𝒙∗  is the vector of correlations between the new point 𝒙∗ 
and the existing N points.  It is of size N*1.   

 F is the set of basis functions for the original full data set X.  

 These are the conditional predictions (conditional on the 
data).  

 



What does this look like?  
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staffwww.dcs.shef.ac.uk 

Note the reduction in variance as you have more data  

http://staffwww.dcs.shef.ac.uk/people/N.Lawrence/gp/


What does this look like?  
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This plot 

shows mean 

and variance 

plus random 

realizations 



Properties of the GP approximation 
 The mean prediction interpolates the data. 

 

E 𝑦 𝒙∗ |𝒀 = 𝑓 𝒙∗ 𝑇𝜷 + 𝑟 𝒙∗ 𝑇𝐑−1[𝐘 − 𝐅𝜷] 
 

 The mean prediction is a linear combination of basis 
functions 

 The predicted variance increases the further away the 
new point is from existing points. 

 
Var[𝑦 𝒙∗ 𝒀 = σ2(1 − 𝑟 𝒙∗ 𝑇𝐑−1𝑟 𝒙∗ )

 
 



Correlation Function 
 Want to capture the idea that nearby inputs have highly correlated 

outputs. 

 The correlation in some dimensions may be more important than 
others…different “length-scales” in each dimension 

 Common correlation functions include 

Power-exponential (or squared exponential):   

 Typically the exponent pj is 2, which gives smooth realizations. If pj is 
1, you get much rougher realizations.  

 Larger values of j mean smaller correlation in the xj direction. 
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Correlation Function 
Matern 

 

 

 

 

 

 Is equal to the exponential covariance function when  = ½.  

 

 Is equal to the squared exponential when    

 

 Typically,  = ½, 3/2, or 5/2, going a process that looks rough to a 
process that is fairly smooth.  

   

 Other covariances are possible:  Cauchy, polynomial functions, etc. 
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Putting it all together 
 Start with N runs of a computer code, with points {xi, yi}.  

Ideally, the N points will be a well-spaced design such as Latin 
Hypercube. 

 Define the mean function for the Gaussian process. 

 Often, zero mean or constant mean is used.  

 Define the covariance function for the Gaussian process.  

 Typically, the power-exponential function is used.   

 Estimate the parameters governing the Gaussian process, 
including β, , and any parameters of the correlation 
function R such as j. 
 Can use maximum likelihood or Bayesian methods  

 Substitute the parameters in the prediction equations and 
obtain mean and variance estimates for new points x*   
 
 

 



Parameter Estimation (MLE) 
 The observed training values represent a realization of a multivariate 

normal distribution.  

𝑓 𝒀 = (2𝜋)−
𝑁
2 ||−

1
2𝑒𝑥𝑝 −

1

2
(𝒀 − )𝑇−1(𝒀 − )   

 The basic idea of MLE is to find the particular mean vector and 
covariance matrix that define the most likely multivariate normal 
distribution to result in the observed data. 

 Take the Log Likelihood and maximize it: 

 log(𝑓 𝒀) = −
𝑁

2
log 2𝜋 −

1

2
(𝜎2𝑁|𝑹|) −

1

2𝜎2
(𝒀 − F𝛃)𝑇 𝑹−1(𝒀 − F𝛃) 

 Drop the -1/2 term, and the first constant term and minimize the 
negative log-likelihood:  

 𝑁𝐿𝐿 = Nlog 𝜎2 + log 𝑅 +
1

𝜎2
(𝒀 − F𝛃)𝑇 𝑹−1(𝒀 − F𝛃) 

  



Parameter Estimation (MLE) 
 Use global optimization methods to optimize the NLL  

 OR 

 Use gradient-based optimization to optimize the NLL.  The derivations have 
been worked out with respect to β, , and correlation parameters of R.  

 Conditional on fixed values of the correlation parameters, the optimal 
values for β and  are given by the generalized least squares formulation: 

𝜷 = (𝑭𝑻𝑹−𝟏𝑭)−𝟏(𝑭𝑻𝑹−𝟏𝒀)  

𝜎2 =
1

𝑁
(𝒀 − F𝛃)𝑇 𝑹−1(𝒀 − F𝛃) 

 One can use an iterative method, and obtain optimal correlation 
parameters , then calculate R and substitute it into above expressions 
above for β and . 

 This optimization has been studied fairly thoroughly.  A good reference is:  

Jay Martin.  “Computational Improvements to Estimating Kriging Metamodel 
Parameters.” Journal of Mechanical Design.  Aug. 2009, Vol. 131, p. 084501:1-7. 



Bayesian parameter estimation 
 Denote all of the parameters governing the GP as:  

  = (β, , j).   

 Bayesian approach to estimate posterior distribution on hyperparameters 
:  

 

 

 Likelihood is the same as before with MLE 

 Use Markov Chain Monte Carlo (MCMC) to solve it 

 Requires thousands of evaluations of the likelihood function 

 Large amount of work done in the statistical community about priors on 
these parameters, estimation of marginal likelihoods.  

 Jeffreys-independent prior, reference priors, are often assumed 

 Need to be careful that priors are not improper 

 Reference: Paulo, Rui. Default priors for Gaussian processes. Ann. Statist. 33 
(2005), no. 2, 556--582. doi:10.1214/009053604000001264.  

 

 

 

 

21 

)|,()(),|(  YLY XX 



Experimental Design 

 The training set of {xi} points, i= 1…N is usually a space-filling 
design such as a Latin Hypercube design or a maxi-min LHS  

 Want the points to be well spaced 

 Don’t want highly collinear points (close together) 

 PROBLEM:  
 The prediction calculations require the inversion of the correlation 

matrix  

 Often the correlation matrix is ill-conditioned and may be numerically 
singular 

 Happens even with a few hundred points in 2-D 

 One can’t invert R to use in the prediction calculation  
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Techniques to handle ill-conditioning 
of the correlation matrix 

 Remove points in a random or structured way (“Sparsification”) 

 Often, a small “jitter” or noise term σ𝜖  is added to the diagonal 
terms of the covariance matrix to make the matrix better 
conditioned.  

  𝐶 = σ2𝑅 → 𝐶 = σ2𝑅 + σ𝜖
2𝐼,   

 

 Adding a nugget term  
 Estimate the nugget as part of the measurement error 

 Fix the measurement error and add a nugget, may have to do this 
iteratively until the nugget is big enough to make R well-conditioned 
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Techniques to handle ill-conditioning 
of the correlation matrix (cont’d) 

 Linear algebra tricks 
 Don’t take the inverse of R, take the Cholesky factorization 

 Pseudo-inverse 

 Discards small singular values 

 Pivoted Cholesky Factorization 

 discard additional copies of the information that is most duplicated 

 Decrease the maximum eigenvalue and increase the minimum 
eigenvalue 

 Gradient-enhanced kriging 

 SAND Report 2013-7022.  Efficient and Robust Gradient 
Enhanced Kriging Emulators, by Keith Dalbey.   
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Software and Resources 
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Resources 

 Websites: www.gaussianprocess.org 

 Managing Uncertainty in Computer Models (MUCM):  
 UK project headed by Prof. Tony O’Hagan, University of Sheffield 

 http://www.mucm.ac.uk/Pages/ReadingList.html 

 Books:  
 Gaussian Processes for Machine Learning, Carl Edward Rasmussen and 

Chris Williams, MIT Press, 2006. 

 Statistics for Spatial Data, Noel A. C. Cressie, Wiley, 1993. 

 The Design and Analysis of Computer Experiments.   Santner, T., B. 
Williams, and W. Notz.  Springer, 2003. 
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Software and Resources 

 Software:  
 R:   tgp (Gramacy and Lee), gptk (Kalaitzis, Lawrence, et al.),  GPfit 

MacDonald, Chipman, and Ranjan) 

 Matlab:  gpml (Rasmussen, Williams, Nickisch), GPmat (Sheffield 
Group) 

 Python:  scikit-learn.   http://scikit-learn.org/stable/ 

 Python:  GPy, gptools, pyGPs, etc. 

 C++:  https://github.com/mblum/libgp 

 MIT Group:  MUQ/GPEXP (Python) 

 Dakota/Surfpack (C++) 

 Lots of others…. 
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Example Use Cases 
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Efficient Global Optimization 
 Technique due to Jones, Schonlau, Welch 

 Build global Gaussian process approximation 
to initial sample 

 Balance global exploration (add points with 
high predicted variance) with local optimality 
(promising minima) via an “expected 
improvement function” 

 

 

 

 

 Iteratively add points that have maximized EI, 
we use a DIRECT global optimization algorithm 
to identify that point 

 Derivative-free, very efficient for low-dim. 

True fn 

GP surrogate 

Expected 

Improvement 

From Jones, Schonlau, Welch, 1998 



Efficient Global Reliability Analysis  
   (EGRA) 

• Reliability methods find “failure surface” or “limit state contour” between “safe” and 

“failure” regions, often defined as g(x)=0 

• Integral of the probability density of the inputs over the failure region is the 

probability of failure 
 

 

 

 

 

• Local reliability methods have problems with the nonsmooth, multimodal, and 

highly nonlinear failure surfaces  

• EGRA is a global reliability analysis that uses a variant of EGO 

- The expected improvement is now the expected feasibility:  penalize points 

from being away from the g(x)=0 boundary 

- Balance explore and exploit in locating the limit state (EGRA) 

- Handles nonsmooth, multi-modal, highly nonlinear response functions 
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Efficient Global Reliability Analysis 

         Gaussian process model of reliability limit state with 

10 samples       28 samples 

explore 

exploit 



Efficient Global Reliability Analysis 

Mean             Variance   Expected Feasibility 



EGRA: Benchmark performance 

CDF Comparison 

MV 

FORM 

PCE(2) LHS 

EGRA 

Rosenbrock 

Test 

+ 

Accuracy similar to exhaustive sampling at cost similar to local reliability assessment 

Multimodal 

Test 

+ 



Bayesian Formulation 

 Generate posterior distributions on model parameters, given 
 Experimental data  

 A prior distribution on model parameters 

 A presumed probabilistic relationship between experimental data and 
model output that can be defined by a likelihood function 
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Model parameters Observed  

Data 

Likelihood function which  

Incorporates the model 

Prior parameter 

distribution 



Bayesian Calibration of Computer 
Models 
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 Experimental data = Model output + error 

 

 

 If we assume error terms are independent, zero mean Gaussian random 
variables with variance 2, the likelihood is:  

 

 

 

 How do we obtain the posterior?  

 It is usually too difficult to calculate analytically 

 We use a technique called Markov Chain Monte Carlo (MCMC) 

 In MCMC, the idea is to generate a sampling density that is 
approximately equal to the posterior.  We want the sampling density 
to be the stationary distribution of a Markov chain.   
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Bayesian Calibration:  Approach 

 Take initial set of samples from simulation  

 Use LHS or space-filling design 

 Develop Gaussian process approximation of the simulation 

 Put priors on the input parameters 

 Perform Bayesian analysis using MCMC 

 Generate and analyze posterior distributions 

 NOTE:  GP surrogate adds a layer of uncertainty.  However, this is explicitly 
modeled in the revised likelihood:  
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THANK YOU!  
QUESTIONS? 
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